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Introduction

While FDTD methods, such as that of Yee [1], are very versatile and have found
widespread use in electromagnetics, modeling thin wires in such algorithms can present
special problems. The wires are usually much thinner than the desired cell size, and reduc-
ing the cell size would require also reducing the time increment. Several methods have been
used to treat thin wires in FDTD. Merewether and Fisher [2] and Umashankar et al. [3] used
contour integration incorporating the 1/p field behavior. Parks et al. [4] and Holland [5]
coupled the transmission line equations for the wire current to the FDTD mesh equations.
Riley [6] and Mittra [7] solved integral equations for the wire current coupled to the mesh
fields. These methods usually are best suited to wires that lie along edges for the electric
or magnetic field in the mesh. When the wire can be moved, it often results in reduced
accuracy. Requiring wires to lie on cell edges restricts the wire geometry when cells are
orthogonal, and even with more general meshes it requires generation of a new mesh when
a wire must be moved. This limitation may be a major reason that FDTD methods still are
not nearly as popular as frequency domain integral equation and finite element techniques
for modeling wire structures.

It would be very valuable to be able to locate wires independently of the mesh. This
paper presents some efforts in that direction, considering the lateral movement of wires par-
allel to cell edges and also adjustment of the wire length with respect to the cell boundaries.
The transmission line method used for the wire is similar to that described by Holland [5],
but the averaging to couple the transmission line fields to the mesh fields is done in a way
that can be generalized to wires moved with respect to cell edges. The treatment of wires
passing through electric field edges is considered first, and then is generalized to wires moved

from the edges. The accuracy when the wire is moved is demonstrated by comparisons with
NEC [8].

Treatment of Wires on Cell Edges

In the method considered here the transmission line equations for current and voltage
along the wire are coupled with the FDTD equations of the standard Yee algorithm [1].
The transmission line equations for the wire current are derived from the ¢ component of
Maxwell’s V x E equation and the p component of the V x H equation
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For current I and charge () on a wire on the z axis, the £, and Hy components for small p
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can be approximated as

I
d Hy=—.
2mep an ¢ 2mp
Substituting for £, and Hy in equation (1) and integrating over p from the wire radius a to
the transmission line radius 4, with boundary condition E,(a) = 0, yields

E, =

pln(ry/a) O _In(r¢/a) 0Q
2w ot Ex(rs) 2re 0z
or, defining inductance L,, = (u/27)In(r¢/a),
oI 1 10Q
5 L—w'Ez(Tt) - EE (3)

At this point the transmission line radius r; is an arbitrary distance to the outer shell of
the transmission line that couples to the mesh fields. It will be found to drop out in the
treatments that follow. Substituting for £, and Hy in equation (2), and averaging over ¢ to
eliminate the 0H,/0¢ term yields the continuity equation

8Q ol
5 T (4)

To reduce equations (3) and (4) to discrete form, the current and charge will be sampled
at points spaced by Az along the wire with time step A¢. Then I and Q% represent the
current and charge at sample point £ and time step n, with charge points displaced from
current by Az /2. With a central difference approximation of the derivatives, and introducing
an applied voltage V', equations (3) and (4) become

+1/2 —1/2 At 1) At 7 inc
I; /2 = Iy /2 T (QF —Q}_1) + Aol (Ef Az — V) (5)
At
+1 n+1/2  n+1/2
QT =%k - % (Ik+1 -1 ) : (6)

These can be written in terms of a voltage by defining capacitance Cy, = pe/Ly, as

o2 By yn g gy (7)
AzLy,
At
1 n+1/2 n+1/2
vt _v,g_m<zk+1 -, (8)

The simplest situation for solving the transmission line equations coupled to the FDTD
mesh is when the wire lies along the E, edges. The transmission line current drives the
mesh through the E, update equation, and E, from the mesh drives the transmission line
through the E7) term in equation (5). E7, in equation (5) is interpreted as the mesh field
averaged around the outer shell of the transmission line at radius 7;. However, the E, value
available from the mesh equations is the field averaged over a cell face. Holland [5] deals
with this difference by averaging the equations (5) and (6), so that E7, in equation (5)
becomes the average field over the face, which is available, and L, is averaged for p from a
to 1t = \/AzAy/w. The average inductance can be approximated as

_ g [fn(r/a)rdr  u 1 a®
Lp=tda ~ ko RS . 9
Y o Jotrdr 27 a(re/a) 5" 2r? ©)

2



Holland also averages over a rectangular cell face and applies an empirical correction factor.
This approach gives accurate results, but it is not clear how to generalize this averaging for
a wire moved off of the F, edge.

Another way that was found to work well for coupling the transmission line equations
to the mesh fields with the wire on E, edges is to use the exact inductance for ry = Az/2,
and drive equation (5) with an average of the E, mesh fields

n _ 1 n 1/ pn n 7 7
=3 (Ez'w,jw,k + 2B 10k Bittgu T By gu—1e + Ez'w,jwﬂ,k)) (10)

for a wire at mesh coordinates (4, jw, k). In comparisons with NEC, equation (10) seemed
to give slightly better accuracy than Holland’s average inductance with correction factor,
and remained stable to larger wire a/Az. Another method used by Riley [6] is to locate
the wire on the H, edges and let the transmission line radius pass through the surrounding
E, points. Actually Riley had an unstructured mesh and r; was the average distance to F,
samples. For cubical cells, r; = Az/+/2, and E7. in equation (5) is the average of the F,
mesh fields

n __ 1 n 7 n 7
o = 1wk T Bt gk T By ot p t Ll jut k) (11)

for the wire at (iw+1/2, juw+1/2, k). It is not obvious how to generalize any of these averages
for a wire at an arbitrary location in the z-y plane while maintaining the same accuracy. We
also tried bi-quadratic interpolation on the 3 x 3 edges surrounding the wire on an E, edge,
and bi-cubic interpolation on the 4 x 4 E, edges surrounding a wire on a H, edge, but the
results were not satisfactory.

Wires Displaced from Cell Edges

To generalize the wire location, we looked at the behavior of the fields in the mesh due
to the wire excitation. The field component FE, at a distance 0, Az and 2Azx from a wire
located on the E, edges is shown in Figure 1 for varying wire radius, with the computed
fields connected by straight lines. The wire length was 1.4 m with a cell size of Ax = 0.035
m, and the center three segments of the wire were excited with 1/3 volts each, so that results
could be compared for a cell size three times larger without changing the source gap size.
The fields in Figure 1 were obtained using the average field of equation (10) to drive the
transmission line. Similar results were obtained using Holland’s average for a square cell
with correction term [5, eq. 53] but that solution became unstable for radii of 0.01 and 0.014
m. The fields in Figure 1 represent the the peak values adjacent to the center of the wire
due to a Gaussian pulse excitation with full-width-half-max (ttwhm) of 2 ns. For all solutions
in Figure 1 the wire current was in good agreement with the NEC model.

Examination of Figure 1 shows that E, varies with x approximately as the average of
In(x/a) with the function going negative for z < a. This differs from the average in equation
(9), where the field is assumed zero inside the wire. The transmission line equations, in
effect, put a boundary condition E,(a) = 0 on the fields that the mesh is averaging, but the
field goes negative inside the wire as if it were produced by a filament of current on the wire
axis. A simple model for comparison with the mesh fields is obtained by averaging log(p/a)
over an annular region extending from p = max(0,ro — A/2) to 7o + A/2. This yields

1 r2n(r1/a)—r2In(ro/a) .
Fa(TO, A, (1,) —_ { 2 + T%—-T’? lf To > A/2 (12)
—1 +1In(ro/a) if 0<rg<A/2
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Table. 1. Relations of average F, from the mesh and cor-
responding average of log(r/a) for a distance of 0 and Az

from a wire of radius a (Ey, E; and Ag, A1, respectively). 0.2

Wite  Eo/E1 Ao/A1 (Eo+Ei)/ log(2)/

rad. (m) (2Ey) Ag

0.014  -0.557 —0.551 -0411  -0.425

001  -0.160 -0.143  -2.48  —-2.963

0.003 0380 0411  1.806 1.737

0.001 0486 0592  1.380 1.354

105 0.826 0821 1112 1.111 0.1
107 0.885 0886  1.065 1.066

where 11 = ro — A/2 and 9 = 19 + A/2. The
average could be computed over cell faces, but in
either case it was found that a fudge factor was
needed on the region size for best agreement with
the observed fields and best agreement of the cur- 0
rents with NEC. For a mesh of cubical cells with '
size Az, it was found that the mesh fields near the

wire were matched best by F,(p, fcAz,a) with f,
approximately 0.78. This seems to work reasonably

well over a wide range of wire radii and cell sizes.

When averaging over a square cell face, rather than

an annular region, the factor was approximately

0.70Az to shrink the side length. Holland arrived 01k
at a similar correction by subtracting a constant
from his average inductance to make it cross zero
at an a/Az that matched a moment method solu-
tion for the wire. The factor of 0.78 for the annular
average was chosen for best agreement of the dipole input impedance with NEC, although
0.80 would work about as well. Any significance of this factor is not understood at this
point. However, it was noted that f. = 0.802188 is the solution of the equation

[Fo(0, feAz,a) + Fy(Azx, foAx,a)]/2 = log(Az/2a) (13)

independent of Az and a. That is, the average of the two averages is equal to log(p/a) at
p=Azx/2.

The ratios of Ey/E; and Ag/A; are compared in Table 1, where Ey and F; are the
mesh fields E, at the wire and one Az away, and Ag and A; represent Fy(p, fcAz,a) at
p = 0 and Az. The correspondence shows that Fy(p, fcAz,a) tracks the field well over the
range of wire radii. For the case of Figure 1, where Az = 0.035 m and tfwhm = 17Az/c the
function Fy(p, fc(Az,a) tracks the mesh fields reasonably well out to several Az from the
wire, while for the same wire with Az = 0.1 m and tghm, = 6Az/c the average tracks the
mesh fields from 0 to one Az. In the last two columns of Table 1, the average of the mesh
fields (Ey + E1)/2 and log(Az/2a) are compared, both normalized by their average about
the wire. The correspondence is expected, since the average of equation (10) works well in
driving the transmission line equations.

E, (V/m)

Fig. 1. E, in the mesh at distances 0, Az
and 2Az from a wire with radius a for Az =
0.035 m.

Using F,(p, feAz, a) as a model for the averaged mesh fields, the local E, at é distance

4



p from the wire can be related to the mesh field at the wire location as

2k (0) = B3 (i, ju, k) In(p/a) | Fo (0, felAw, a). (14)

Equation (14) can be used with p = r; to obtain E’,. driving the transmission line in equation
(5). However, equation (14) applies only to the E, field due to a current on the wire. When
the wire is exmted with a voltage source, changing the boundary condition on E,(a), a field
component due to the derivative of charge is introduced that is more slowly varying than
the form of equation (14). Hence the applied voltage should be removed from the E, mesh
field before applying the correction, and the source term in equation (5) becomes

(ERAz — V") = [(ER Az — V") In(r/a)/ Fa(0, felx, a) + Vine] — Ve
=(E%Az — V") In(ry/a)/F4(0, f.Az,a).

Equation (5) for the transmission line current then becomes

Aame [Qk Qz“l]
[AmE (i oy k) — vm] In(re/a)/Fa(0, fA, a)].

+1/2 _n—1/2
I =

+

Az Ly,
Since Ly = 4-In(r¢/ a) the In(r/a) factors cancel to yield
- 2w At
Y2 oge/2 [ n ]
k k Amue @k = Q| + AzpFy (0, foAz,a

so that 7y is eliminated. Equation (15) is essentially the same as that obtained by Holland
by averaging the equation, although the correction of the average is done in a different way.

) [AxEj;(z'w, s k) — VkinC] (15)

When the wire is moved away from the E, edge, Holland [5] suggested splitting the

current by linear proportionality between the surrounding E, edges. Thus for wire current
ITL
k

J7(6 0, k) = Ig (i + 1 — i) (§ + 1 — juw)/Axly (16a)
JPE+1,5,k) = iy —3)( + 1 — ju)/Azly (16b)
Jr 7+ 1L,k) = L+ 1 —dw)(juw — J)/Azly (16¢)
J;l(7’+1’]+1’k) —Ik(’bw——l)(]w—])/ACI}Ay (16d)

are the current densities in the E, update equations for the wire located at 4 < 4, < 7 + 1
and j < jy < j+ 1. Holland suggests using the same factors to interpolate the E, fields
from the mesh to drive equation (5). This approach gave reasonable agreement in the peaks
of admittance, but poor agreement in peaks of impedance as the wire was moved within a
cell.

The field average in equation (11) gave good agreement with NEC for a wire located
on an H, edge, where the current is split equally on to the four surrounding E, edges.
Examining the mesh fields from this solution showed that they do not behave as an average
of a In(p/a) function from the wire location, but rather behave as a sum of averaged In(p/a)
functions from the driven E, edges. Generalizing to unequal edge excitations, the field
averaged about a point r due to excited edges at r; would be expected to have the form

4
= ciFu(|r = 1il, feAz, a) | (17)
i=1



where the c¢; represent excitation strengths. Assuming that the edge fields are excited in
proportion to the currents driving them, the ¢; will be in the ratio of the split currents.
Then defining the factors

(
(4
z3=212=(14+1—14y)(Ju — J)
T4 = 292 = (ty — 2) (Juw — J)

equation (17) becomes

4
E,(r) = C’inFa(]r —1;|, feAz,a).
i=1
This leaves one unknown constant C' that can be determined from the known average field
at a mesh edge. Since we are assuming four excited edges, C' can be evaluated as a weighted

average as
A ,
= ZajEz(rj) where aj = xj/z z; Fy(|rj — 1], feAz, a)
j=1

and ) z; = 1. The local field at a point r can then be evaluated as
4
=C> zila(|r — ril/a).
i=1

The field driving the transmission line is this local field averaged over the outer shell
of the transmission line. Assuming a transmission line with radius r; located a distance ry4
from an excited edge, the average of the log function is evaluated as

2
E, = —2}7; In [(7‘? + rs — 21414 cos(d)))/a) d¢
= In(rmax/a)

where rmay = max(ry, rq). Hence, if 7 is made large enough to enclose all driven edges, the
average field for use in equation (5) in the k plane becomes

4
E?. =C'ln(r¢/a) = In(r¢/a) ZajEzk(rj)

=In(r1/) |01 B (i, o, K) + 02 (i + 1, o, B)
+ 03E (i, juo + 1, k) + 0 By + 1, jup + 1, k)]. (18)

Using (18) in equation (5), and subtracting the applied field from E, results in the update
equation

+1/2 -1 2 n 27TAt . mn( ;
+ 03B (b, Juo + 1, k) + B (i + 1,gw +1,k)) - asumvmc] )
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4 .
where ogym = Y ;1 @;. The transmission a)

line radius 7 is eliminated in the averaging. 3000 : . —
However, it would still occur in the equa- &

tions involving voltage, since the transmis- S I b i
sion line voltage depends on the character- — e e L

istic impedance of the line.

The input impedance of a a 1.4 m

1568 - wire position |
dipole modeled with cell size of 0.035 m 1008 - _
is shown in Figure 2 as the wire is moved //

ALJ JALINS VY AL AL A lb d AN Uil ¥Y AL v AW AAAV ¥V L “
within a cell. The excitation was a volt- 589 - k// X/—
age source spread over the center three

segments (current nodes). The results in )

Re(Z) (ohms)

Figure 2a, using equation 19, show good -588

. . ] ¥
agreement with NEC and independence of ) 200 498 628 800
wire position. Similar results were ob- Frequency (MHz)

tained for the imaginary part of impedance
and with other wire radii. Results in Fig- b) 27em ' ' .
ure 2b were obtained by splitting the wire 2498 ‘

current among the cell edges according to i
: . 2100+ L

equation 16, as done for Figure 1a, but the

electric field driving the transmission line 5 18927 B

equations was obtained as a weighted av- g 1502

erage of the surrounding mesh fields, us- - 12ee

ing the average inductance of [5, eq. 53]. & 500 -

Much more variation is seen in the peaksof & _ . |

impedance as the wire is moved. However, som

when the results of Figure 1b are plotted
as admittance, there is only a few percent
variation in the admittance peaks as the -300
wire is moved, similar to Holland’s results.

Adjustment of wire length

a_.

T T 7
5] 208 400 608 2121]
Frequency (MHZz)

. Fig. 2. Real part of input impedance as a 1.4 m
) When equations (5) or (19) are solved dipgole is movedpwithin t}ll)e meslll); a) result of equa-

with N charge (or voltage) nodes and fixed  jon (19), b) result using average cell inductance and

node spacing of Az, the effective length of linearly weighted average of mesh fields.

the wire is NAz. The solution will include '

N + 1 current nodes, including I; and Iy which have zero current and are located at

Az/2 before ()1 and after @)y, respectively. The length of the wire can be adjusted if the

central difference for the derivate of current is replaced by a second-order approximation

with arbitrary location of the zero current nodes. If the points where the current goes to

zero are extended by § from their normal positions on either ends of the wire, the derivatives

are

dI(z) Az -0 )
=lh——t+t ——
dz [y at Qy Az(6 + Az) Az(6 + 2Az)
dI(z) Az -0 )

Az |yt Qy VR G a NG+ 2A7)

Results of adjusting the end locations by £Az/2 from their normal positions.-on either
end are shown in Figure 3, and are in good agreement with NEC. These results used Az = 0.1
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m, so the agreement with NEC is not as  2see ' ' ‘
good as in Figure 2. \ , 5=0
Conclusion 2000 ~ \ L
NS J [ \ on

It was shown that the accuracy of re- - g J ! ‘\ 3\
sults for wires moved laterally from mesh £ 15ea 4 AN\ b -
edges can be greatly improved by taking < < // WS
account of the behavior of the field in.the g ,ppn- 7 N\ i
vicinity of the wire. Also, the distance to g /S \\
the end of the wire can be adjusted within / // W\ \
a cell by using a general second-order dif- >ee ./ AN B
ference form for the derivative. Making zZ” N
the wire location completely independent @ T . RS
of the mesh would require the additional 12e 150 2oe 2se 320
ability to tilt the wire with respect to the Frequency (MHz)
edges. This seems to be a considerably Fig. 3. Real impedance of a dipole antenna with

more difficult problem than moving the
wires laterally, since the component of the
mesh field parallel to the wire gets mixed
with the larger radial electric field due to
charge on the wire. Simply averaging the

radius 0.001 m, modeled with 14 charge nodes and

Az =

0.1 m, comparing NEC (solid) and FDTD

(dashed). FDTD end points are extended by 4 for ef-
fective lengths of 1.3, 1.4 and 1.5 m.

mesh fields did not seem to work well, except in the case where the wire was tilted in one
coordinate plane, and the mesh fields above and below the plane of the wire, on edges or-
thogonal to the wire normal, could be averaged. Further study is needed to develop a more

general capability to tilt a wire with respect to the mesh.

Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National

Laboratory under Contract W-7405-Eng-48.
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